Solving structured linear systems with large displacement rank

نویسندگان

  • Alin Bostan
  • Claude-Pierre Jeannerod
  • Éric Schost
چکیده

Linear systems with structures such as Toeplitz, Vandermonde or Cauchy-likeness can be solved in O (̃α2n) operations, where n is the matrix size, α is its displacement rank, and O ̃ denotes the omission of logarithmic factors. We show that for such matrices, this cost can be reduced to O (̃αω−1n), where ω is a feasible exponent for matrix multiplication over the base field. The best known estimate for ω is ω < 2.38, resulting in costs of order O (̃α1.38n). We present consequences for Hermite-Padé approximation and bivariate interpolation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Preprocessing of Homogeneous Linear Systems of Equations

Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations, which leads to significant acceleration of the known algorithms in the cases of both general and structured input matrices. E.g., in the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic dec...

متن کامل

TR-2009008: Randomized Preprocessing of Homogeneous Linear Systems of Equations

Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations, which leads to significant acceleration of the known algorithms in the cases of both general and structured input matrices. E.g., in the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic dec...

متن کامل

Randomized Preprocessing of Homogeneous Linear Systems

Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our randomized algorithms and extend our approach to solving nonsingular line...

متن کامل

TR-2009014: Randomized Preprocessing of Homogeneous Linear Systems

Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our randomized algorithms and extend our approach to solving nonsingular line...

متن کامل

Numerical Stability of Some FastAlgorithms for Structured

We consider the numerical stability/instability of fast algorithms for solving systems of linear equations or linear least squares problems with a low displacement-rank structure. For example, the matrices involved may be Toeplitz or Hankel. In particular, we consider algorithms which incorporate pivoting without destroying the structure, such as the Gohberg-Kailath-Olshevsky (GKO) algorithm, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 407  شماره 

صفحات  -

تاریخ انتشار 2008